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ABSTRACT 

 
We compare curvature-based surface functionals by comparing the aesthetic properties of their 
minimizers. We introduce an enhancement to the original inline curvature variation functional. This 
new functional also considers the mixed cross terms of the normal curvature derivative and is a 
more complete formulation of a curvature variation functional. To give designers an intuitive feel for 
the preferred shapes attained by these different functionals, we present a catalog of the minimum 
energy shapes for various symmetrical, unconstrained input surfaces of different genera. 
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Fig. 1: The control polyhedron of a symmetric genus-2 starting shape (a), with its corresponding minimizers for (b) 
Bending, (c) MVS and the (d) new MVScross energy functionals respectively. 
 
1. INTRODUCTION 

Freeform surface design is found in CAD systems used for geometric sculpting, consumer products, ship hulls, and 
automotive shapes. With ever increasing computing power, surface designers will soon be able to use functional 
optimization as an interactive tool for designing smooth shapes. In a typical aesthetic design task, the designer will 
provide the input surface along with any geometric constraints such as boundary conditions, position or normal values 
at some interior positions, or certain parts of space to avoid. All other surface parameters constitute the degrees of 
freedom that will be adjusted by the optimization system to minimize some “cost” or “energy” functional associated 
with the surface. The resulting smooth surface will be completely defined by the genus, symmetry, and constraints of 
the input surface, and the energy functional that is minimized. The exact formulation of the mathematical functional 
strongly influences the nature of the optimal shapes. Given the same input surface and constraints, different functionals 
result in different minimizers, each with different aesthetic properties (Fig.1). In this report, we characterize the 
aesthetic properties of commonly used surface energy functionals. We do so by comparing their respective minimizers 
for starting shapes of varying genera and types of symmetry. 
 
Traditionally, the functional used most often is the total bending energy. Assuming that the surface is a thin, infinitely 
stretch-able shell (“Bernoulli’s elastica”), its bending energy is calculated as the area integral of squared principal 
curvatures. This functional is equivalent to the well-known Willmore energy functional [24]. A popular and publicly 
available tool for computing the Willmore energy minimizers is Brakke’s Surface Evolver [4], which iteratively refines 
and optimizes the triangulated input surface to approach the final minimum energy state.  
 
Using the Surface Evolver, Hsu et al. [12] studied and catalogued the Willmore energy minimizing forms for the 
unconstrained closed input surfaces of genus zero to five. For genus greater than one, the energy minimizers acquire 
the shape of Lawson surfaces [13] (Fig.1b) or a shape that can be transformed into a Lawson surface by a conformal 
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Moebius transform[12]. For higher genus (>5), the Lawson surface tends to look more and more like two intersecting 
spheres, with the intersection line shrinking to a smaller circle area compared to the diameter of the two spheres. 
Overall, the Willmore energy minimizers tend to be “blobby”; it would be difficult to argue that these forms are the 
most beautiful shapes that a surface of a given genus could acquire. The extreme differences in curvature found in the 
Willmore energy minimizers are unacceptable to most designers. Most designers prefer surfaces with a more balanced 
distribution of curvature – such a surface would have uniform toroidal arms of thickness comparable to that of the rest 
of the surface features (like the tunnels going through the object). 
 
Out of the above considerations, the Minimum Variation Surface (MVS) functional was born [17]. The authors wanted 
a functional that penalized curvature change along the lines of principal curvature. They were inspired by the perfect 
shape of genus zero: the sphere. Arguing that the sphere should thus have a “cost”/“energy”/“penalty” value of zero, 
they chose to define their energy as any deviation from a sphere. With these premises it was natural to create a 
functional that calculates the surface integral over the changes in curvature. To keep things simple and efficiently 
computable (in 1992) the authors only considered in-line curvature changes along the lines of curvature to define their 
so-called “MVS” energy. This resulted in many pleasing energy minimizing forms [17].  
 
The MVS functional reports a value of zero for cyclides – surfaces whose lines of principal curvature are circles. One 
drawback of the MVS functional is that all cyclides result in a total MVS energy of zero. We introduce and evaluate a 
new functional that allows us to distinguish between different cyclides and present its energy minimizing forms. 
 
Goal: In a future CAD system, we expect that designers will have a choice among several functionals when designing 
smooth surfaces. To give designers an intuitive understanding of the aesthetic properties of the different functionals 
and what kind of surface forms one should expect upon optimization, we present a catalog of energy minimizing 
shapes (and their associated energy values) for different genus and symmetry constraints. 
 
Since the computation of these shapes turned out to be much trickier than we originally expected, we present the 
details of our computational approach in Section 3 of this paper. Note that these computations took longer than what 
one would want in an interactive design system. However, for this report, accuracy and reliability were our foremost 
concerns, and speed of the optimization system became a secondary issue. 
 
With our benchmark system in place, as future work, we can begin examining approximate methods that will yield 
similar looking surfaces but at grossly reduced computational costs. Any such system that we or anybody else might 
develop could then be calibrated and verified against shapes produced in our benchmark system. 
 
2. CURVATURE BASED ENERGY FUNCTIONALS AND RELATED WORK 

Most popular surface energy functionals are directly inspired by energy functionals designed for curves. Often, the 
energy of an infinitesimally small surface area element is defined as the average energy of the surface curves passing 
through that element. Integrating the energy of the small area element over the entire surface gives the total surface 
energy. By selecting different curve properties to measure (curvature, change in curvature etc.) and by considering 
special subsets of the surface curves (geodesics, lines of curvature etc.), we can design various surface energy 
functionals.  
 
Bending Energy: This well-known functional is a generalization of Bernoulli’s “elastica” energy that measures the 
square of curvature (∫κ2ds) integrated over the length of a given curve. For curves on a surface, we consider only the 
component of curvature along the surface normal. This normal curvature (κn(θ)) is a function of the principal 
curvatures (κ1, κ2) parameterized by the angle θ made with the first principal direction. The average value of the square 
of normal curvature for all geodesic curves passing through a point can be computed by (see [16] for a complete 
explanation)  
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For surface optimization, we consider only a subset of the above terms and define the bending energy as an area 
integral of the surface, 
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There are several equivalent formulations of bending energy, all producing the same minimizers. Expanding the term 
in the above integral gives  
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where H is the mean curvature and G the Gaussian curvature. According to the Gauss-Bonnet theorem, for closed 
surfaces, the area integral of the Gaussian curvature is a topological constant that depends only on the genus of the 
surface 

 )genus1(421 −=∫ πκκ dA . (4) 

Usually, the topological type (that is, the genus) of the surface is unchanged during optimization. Therefore, if we 
ignore the integral of Gaussian curvature and minimize only the total squared mean curvature, we obtain the same 
minimizers. Note that bending energy is scale-invariant: uniformly scaling the surface has no effect on its bending 
energy. Therefore, this functional can be used to optimize closed surfaces without any external constraints. The 
functional that measures the area integral of the squared mean curvature is the well-known Willmore energy 
(∫H2dA)[24]. The stable, local Willmore energy minima have been found for surfaces of different genera [12]. For 
surfaces of genus 0, the minimal shape is, of course, a sphere, and it has a Willmore energy of 4π and a bending 
energy of 8π. For genus 1, energy is minimized in the Clifford torus  in which the ratio of the two defining radii is equal 
to 1/√2 (both, the Willmore and bending energy are 8π). For a higher genus, Kusner [15] has conjectured that the 
corresponding genus’ Lawson surfaces [13] are the global energy minima with a total Willmore energy that lies below a 
value of 8π. 
 
An interesting insight into the behavior of the bending energy functional is obtained by considering a functional that 
prefers umbilic points (as those on a sphere) and penalizes surface points where the normal curvature shows a large 
variation across all directions. Surprisingly, minimizing such a functional is equivalent to minimizing the bending energy 
(see [22]). That is, if we measure the change of normal curvature across all directions θ, 
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This fact becomes useful when we analyze the shape features preferred by the bending energy functional.  
 
For an open surface topologically equivalent to a disc and suspended in a closed 3D boundary curve (with only 
position constraints at the boundary), this same functional also aims to minimize total surface area. The resulting 
shapes are the so-called minimal surfaces. The effect of this functional is found in nature: minimal surfaces are naturally 
found as soap films in equilibrium formed between wire loops. These shapes are characterized by the fact that the 
mean curvature at every point of the surface is zero. 

 everywhere;02/)(Surface Minimal 21 =+⇒ κκ  (5) 
 
For open surfaces with boundary constraints, Hari et al. [11] describe a robust, finite-element-based Willmore energy 
optimization system. Besides the Surface Evolver, there are several papers that describe a discrete shape operator, 
usually for producing diffusion flow (specifically mean curvature flow or Willmore flow) for densely triangulated 
surfaces. While impossible to list every publication concerning discrete operators, we point the reader to some recent 
work – namely, Bobenko and Schroeder [5] for a novel shape operator that preserves the Möbius invariance of 
Willmore energy, and Grinspun et al. [10] for a shape operator with strong convergence guarantees. Also see Xu et 
al.[25] for a discrete operator that studies variation of curvature.  
 
Note that there is a large body of excellent research on interactive surface fairing using linear approximations of the 
non-linear variational problem. The speed gained is at the cost of dependence on either the input parameterization, or 
a particular input shape (the so-called “Data Dependent” fairing approaches). Since we are interested in approaches 
that measure only the intrinsic geometric properties of the surface, we will not list those publications here. 
 
MVS Energy: It has been argued [21] that bending energy may not be the best “beauty functional” for aesthetic 
surface design. For the surfaces of higher genus, most people prefer a better balance between the diameters of the 
toroidal handles and the holes between them. This balance is brought about by a more uniform distribution of 
curvature over the surface. Thus we might obtain a better functional to evaluate the fairness of a curve or surface, if we 
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try to minimize the integral over the squared change of curvature instead. Towards this goal, Moreton and Séquin [17] 
introduced the “MVS” functional that measures curvature variation by integrating the squares of the derivatives of the 
principal curvatures in the directions of their respective principal directions. The additional (∫dA) is for scale invariance 
[22].  

 
2 2

1 2

1 2
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κ κ
= + •∫ ∫ . (6) 

Here e1 and e2 are principal curvature directions. The optimal surfaces according to this functional have minimum 
variation of curvature, hence they are dubbed minimum variation surfaces, thereby giving the functional its name. The 
MVS functional returns a zero value for surfaces where the principal lines of curvature are exact circles. That is, all the 
cyclides of various shapes (spheres, cylinders, cones, tori, and even horn tori) are “perfect” surfaces of zero MVS cost. 
Of course, this is also a drawback of the original MVS functional: all cyclides give a zero energy value, and the 
functional is unable to distinguish between them. Clearly, the assymmetric horn-cyclide should not be judged equally 
fair and beautiful as a well balanced, rotationally symmetrical torus. In order to obtain such discrimination and rank 
cyclides according to their aesthetic properties, we need to also take into account the mixed cross terms of the 
curvature derivative, i.e., the terms dk1/de2 and dk2/de1. Towards that goal, we now introduce an enhancement to the 
original MVS functional.  
 
MVScross Energy: In addition to considering the change in normal curvature along the in-line direction, we now also 
consider the change in normal curvature along the orthogonal direction. This leads to the new functional, 
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The reader will notice that the MVScross functional measures the squared 2-norm of the gradient of the principal 
curvatures with respect to the Riemannian metric (that is, using the principal directions as the basis vectors). Therefore, 
we believe this functional is a more complete formulation of an energy that measures curvature variation along lines of 
curvature. In contrast with the original MVS energy, there are only two shapes that have zero MVScross energy: the 
sphere and an open cylinder (with a circular cross section of any radius). Roughly speaking, the MVScross energy of a 
surface measures the deviation of the surface from a perfect sphere or a cylinder. 
 
Note that even the MVScross functional measures only a part of the total curvature variation for a surface. A more 
general curvature variation introduced by [16] measures the variation of curvature for all geodesic surface curves 
through a point on the surface. An even more general approach is taken by [8] in their definition of six third-order 
functionals that measure the variation of curvature for all surface curves through a point on the surface. A comparison 
of MVS and MVScross with these more general curvature variation functionals is a topic of future work.  
 
3. EVALUATION FRAMEWORK 

Similar to the work of Hsu et al.[12], we push our optimization system to find the true local energy minima for various 
input shapes. During several stages of our project, seemingly unimportant details of the implementation became crucial 
factors in limiting the accuracy of our results. Therefore, while our optimization system is conceptually simple, we now 
describe some important implementation details. In particular, we describe our choices for surface representation and 
our optimization procedure.  
 
Surface Representation: We use the popular Catmull-Clark subdivision surfaces [6] as a basic representation of the 
shapes to be optimized. Away from the extraordinary vertices,  the surface is simply a collection of bi-cubic B-spline 
patches connected with G2 continuity. Therefore, we can use the surface representation directly for Willmore and 
curvature variation optimization. Also, since Catmull-Clark surfaces have square-integrable curvature everywhere (see 
[18]), we can use the limit surface directly even near extraordinary vertices for the Willmore energy optimization.  
 
As pointed out by Sabin et al. [19], the curvature values of a Catmull-Clark limit surface diverge near extraordinary 
vertices. The divergence starts at the patch boundary away from the extraordinary vertex and increases as we get 
closer to the vertex. In terms of implementation, as we increase the sampling density for a patch adjacent to an 
extraordinary vertex, the MVS and MVScross energy values will diverge and create numerical instabilities. Therefore, we 
need to change the limit surface definition for a patch near the extraordinary vertex so as to obtain square-integrable 
curvature derivatives everywhere on the surface.  
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We use a method similar to the “flatness” parameter in Biermann et al. [2] and “iron” out the curvature discontinuity 
near the extraordinary vertex with a flat spot (see Fig. 2). The surface near the extraordinary vertex is defined as a 
blend between the original Catmull-Clark surface (with the curvature discontinuity) and the limit  
 

      
 
Fig. 2: Original Catmull-Clark limit surface (2a) compared with the modified, blended limit surface (2b) near an 
extraordinary vertex. The blend function is shown in Fig. 2c. We use the modified surface to obtain the necessary 
smoothness for curvature variation optimization. 
 
surface projected to the tangent plane of the extraordinary vertex (with no curvature discontinuity). The blend function 
can be any smooth function that is at least C3 continuous and has the value 1 (in the limit) at the extraordinary vertex 
and value 0 (in the limit) at the nearest neighbors. We found that the C∞ function from Ying and Zorin [26] gave us an 
intial blend surface with the best aesthetic properties 
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The control polyhedra of our surfaces have quadrilateral facets, so for a point with parameters (u,v), the blend function 
is defined as blend(u)*blend(v). The extraordinary vertex has parameters (0,0) –  the blend weight achieves value 1 at 
the extraordinary vertex and value 0 on the patch boundaries not containing the vertex. The resulting blend function is 
shown in Fig. 2c. 
 

Note that more sophisticated methods like Levin’s scheme [14] or the various manifold-based constructions (e.g.[9], 
[26]) may produce starting surfaces with aesthetically better shapes without a noticeable flat spot. However, this flat 
spot is not a major problem for us. As we increase the level of subdivision and move towards a finer control mesh, the 
size of the flat spot decreases. The additional control vertices introduced with the higher levels of subdivision will be 
adjusted by the optimization procedure to remove any flatness in the neighborhood of the extraordinary vertex. Thus, 
our simple smooth surface construction works well for our purposes. 
 
We use the hierarchy inherent to Catmull-Clark subdivision to introduce new degrees of freedom by subdividing the 
control polyhedron. A denser control polyhedron allows us to approximate non-piecewise polynomial shapes like 
spheres and tori with piecewise polynomial patches. 
 
We interrogate the limit surface using Stam’s exact evaluation implementation [23]. The Gauss-Legendre quadrature 
was used to sample quadrilateral patches. The setup of exact evaluation made it possible to take analytic derivatives for 
energy gradient computations. This code was rather long and complicated for the curvature variation functionals, but 
ran much faster than the code for an approximated finite-difference based gradient.  
 

Optimization: Our variational problem is solved with a quasi-Newton method that uses energy gradients to 
approximate a quadratic model of the energy space. The quadratic model indicates an energy minimum and gives a 
search direction towards that minimum. A line search routine samples the surface energy along that direction to find 
the first local energy minimum. These two steps are repeated until the energy attains a steady, fixed value. We use the 
routines in the excellent Toolkit for Advanced Optimization (TAO) [1] for our benchmark system. We did not use 
methods that required the exact energy Hessian (e.g. Trust Region Methods) for coding convenience. 
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4. ENERGY MINIMIZING SHAPES 

We subjected a set of canonical, symmetric starting shapes to unconstrained optimization (for all three functionals). The 
differences in the aesthetic properties of the functionals are readily apparent when we compare the minimizing shapes 
obtained. Our goal was to find the final, optimal shapes and observe the typical shape characteristics of these 
minimizers. As a test for robustness, we verified that our system was able to reach the same minimum from two 
different input shapes with the same symmetry, typically one much skinnier and one much fatter than the final 
minimizer (Fig. 3). We first give a detailed description of our experiences with a torus, and then present a gallery of 
energy minimizing shapes of high-genus. 
 
 

 

Fig. 3: Two drastically different genus-3 input surfaces with tetrahedral symmetry (left, middle) produce the same 
minimizer (right) upon MVScross energy optimization.  
 
4.1 Torus Experiments  
We performed experiments by sampling an analytic torus surface. The only degree of freedom was the ratio of the two 
torus radii. These experiments allowed us to compare the optimization of a perfect surface without having to worry 
about errors brought about by the mesh discretization and piecewise polynomial approximation of a smooth surface. 
The intuition gained about the behaviour of the functionals was useful in understanding the minimizers for the 
subsequent, more complicated high genus shapes.   
 
Bending Energy: As expected, all input torus configurations produced the “Clifford Torus” (with a radius ratio of 1/√2) 
on Bending energy optimization (see Hsu et al. [12] for a detailed explanation of this shape).  
 
MVS Energy: Since the MVS energy of a torus is zero, all torus configurations produced zero energy.  
 
MVScross Energy: This energy tries to make the best approximation of a cylinder from a closed torus mesh. Constructing 
a cylinder from a genus-1 surface without introducing cuts is impossible. In the absence of the scale-invariance term 
(∫dA), an infinitely large torus (of any circular cross section) would be a good piecewise approximation to a cylinder. 
However, with the scale-invariance term added in, this infinitely large torus gets represented as an infinitely thin torus. 
Therefore, this infinitely thin torus is the MVScross minimizer of genus-1 (with energy of approximately 780 – see Fig. 4). 
          
Mixed Energy: Obviously, the genus-1 minimizer of the MVScross functional is not particularly attractive. However, we 
now have the ability to combine the Willmore energy with the MVScross energy to define a new functional 
 
 cross1 2(Willmore Energy) (MVS  Energy)Blend Energy w w= + . (9) 

 
The values of w1 and w2 can be tweaked so that its genus-1 minimizer is a torus with a desirable ratio of radii spanned 
by the Clifford torus and an infinitely thin torus. For instance, if w1 = w2, we get a functional whose optimal torus has a 
radius ratio of 0.23 (Fig. 5c). If we prefer to obtain a radius ratio of 0.5 (Fig. 5d), we need to set w1 = 0.95 and w2 = 
0.05. 
 
4.2 Canonical, Symmetrical High-Genus Surfaces 
We present a gallery of minimizers (Table 1) for several high-genus surfaces along with a brief analysis of their shape 
features. The input surface, which serves only to specify the gross shape and symmetry, is represented by its starting 
control polyhedron in Table 1. 
 
Bending Energy: As mentioned in Section 2, minimizing the bending energy is equivalent to making every surface 
point as umbilic as possible (like the surface of a sphere). As a result, the general tendency of the bending energy 
minimization is to round and “fatten” shapes and make them “bulgier” if possible. In general, holes in the surfaces 
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shrink and toroidal arms tend to bulge out. In Table 1, we report the total bending energy values found for each 
minimizer. Given a shape within the proper symmetry class, we obtained the expected Lawson surfaces [13] for all 
values of the genus; all of the Lawson surfaces found by our system have their Willmore energies less than the 
conjectured upper bound of 8π [15]. For surfaces with a genus less than 6, these minimal-energy shapes are quite 
pleasing to look at. However, with increasing genus, these surfaces more closely approximate two spheres intersecting 
along a circle of alternating tiny pillars and holes, reminiscent of the central portion in Scherk’s second minimal surface 
[20] wrapped into a toroidal ring. In general, there is a sharp variation of curvature values from the round spherical 
part to the sharply bending intersection area. Most people do not think that this is an aesthetically optimal shape for the 
higher genus surfaces.  
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Fig. 4: MVScross energy values plotted against torus 
radius ratios. The minimum energy is observed for 
an infinitely thin torus. 
 

Fig. 5: (a) The Bending energy minimizer (Clifford torus), (b) the 
MVScross minimizer (infinitely thin torus), (c) the minimizer of the 
combined energy with w1=w2 (ratio = 0.23), and (d) the 
minimizer of the combined energy with w1=0.95 and w2 = 0.05 
(ratio=0.5). 

 

MVS Energy: Unlike the case of genus-1 surfaces, higher genus input surfaces produce unique minimizers. Compared 
to the bending energy minimizers, the MVS energy minimizers have a more uniform distribution of curvature. As a 
result, these minimizers have thicker toroidal arms that are spaced apart more widely.  
 
MVScross Energy: The MVScross functional considers the curvature cross derivative terms and is more discerning than the 
original MVS. As a result, the overall shape is more uniformly round, and the junctions of the toroidal arms are less 
“blobby”. For a clear example, see the first two rows of Table 1 (genus 2 and 3), where the toroidal arms of the MVS 
minimizers blend with a bulgier, thicker junction as compared to the MVScross minimizers. For the same examples, note 
that the overall shape of the MVScross minimizers is rounder than that of the corresponding MVS minimizers.  
 

4.3 Qualitative Discussion of MVScross Energy 
Upon a closer look at the energy values associated with the various MVScross minimizers, certain characteristics of the 
functional become evident.  
 
Blended N-way Junctions: Most of the MVScross energy in a minimizer is due to the blended n-way junctions, where n in 
our input shapes ranges from 3 to 12. In all these symmetrical shapes, we find that the MVScross energy increases 
roughly proportionally with the number of blended junctions. To show this trend, we have calculated the energy cost 
per blended junction. Tables 2 and 3 list this value for n equal to 3 and 4 for surfaces of various genus. In  Table 2, 
notice that the energy of the blended junction where the toroidal arms come together in a symmetric fashion (top row) 
is significantly lower than the energy of the blended junction where the toroidal arms come together in an asymmetric 
fashion (bottom row). 
 

Symmetry: As the value of n in a blended n-way junction goes up, the MVScross energy seems to increase non-linearly. 
As an example from Table 1, compare the two minimizers for genus 5, where the more symmetric minimizer with a 
cube frame (with eight 3-way blends) has significantly lower energy than the minimizer with rotational symmetry about 
its major axis (with two 6-way blends). This means that the MVScross energy tends to favor more n-way junctions with 
lower n, rather than fewer junctions with higher n. This boils down to a rather desirable feature: the MVScross functional 
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rewards symmetry. The same effect can be seen for the second and third rows of Table 1, where the more symmetric 
shape has lower energy than the less symmetric one (favored by the Willmore energy functional). Any surface beauty 
functional should reward symmetry, and we believe our examples make a good case for the use of the MVScross 
functional as an aesthetic energy functional.  
 

4.4 Characterization of Results 
In summary, we present a brief, informal, but intuitive description of shape characteristics that are obtained at surface 
points after optimization with respect to each functional. Clearly, only textual descriptions are inadequate – in order to 
provide a visual explanation of the characteristics listed below, we presented the shapes of various minimizers in Table 
1.  
 
Bending Energy: Every surface point is as umbilic as possible; final shapes can be bulgy with spherical regions. 
 
MVS Energy: Inline normal curvature variation is minimized along lines of curvature at every surface point; final shapes 
have cyclide-like properties (i.e. if possible, curvature lines are circles) with a more uniform distribution of curvature 
than those obtained by bending energy. 
 
MVScross Energy: Total normal curvature variation is minimized along lines of curvature at every surface point; final 
shapes are as spherical or cylindrical as possible and, in general, have rounder envelopes with toroidal arms of more 
uniform cross-sections than those obtained by MVS energy. 
 

6. DISCUSSION 

For all the functionals mentioned so far, small local surface perturbations can produce large changes in the surface 
energy. This sensitivity causes the functionals to be rather stiff or ill-conditioned. The ill-conditioning creates a generic 
difficulty for optimization of surfaces with dense control meshes. Once every vertex finds itself in a locally optimal 
neighborhood, the amount of movement it is willing to undergo is very small. As a result, the energy gradient is small, 
and the optimization of a dense, smooth surface often becomes prohibitively slow. It is possible for the energy gradient 
to drop to such a small value that the optimization routine prematurely reports convergence to the minimum.  
 
To address this ill-conditioning, we use the multi-resolution aspect of subdivision surfaces. Large-scale shape changes 
occur at a coarse control mesh resolution and more detailed changes occur at a finer control mesh resolution. 
Unfortunately, a coarse mesh does not allow us to accurately represent exact surfaces like spheres and cyclides. To a 
small degree, the discretization errors due to the coarseness of the control mesh influence the shape of the minimum 
energy shape at that mesh resolution. In theory, this is not a problem: by subdividing the control mesh and introducing 
more degrees of freedom, we can undo the damage caused by discretization errors. However, in practice, it is not easy 
to undo the damage: the optimization of the surface with the new, denser control mesh is significantly slower. 
Therefore, one needs to be careful while selecting the input control mesh resolution – on one hand, the mesh must be 
coarse enough to bring about fast shape changes, and on the other hand, the mesh must be fine enough to not drive 
the optimization in a wrong direction. 
 

7. CONCLUSIONS 

Computer-aided design tools are gradually becoming more accessible for aesthetic engineering and for artistic shape 
optimization. We envision the use of functional optimization as a design tool for constructing smooth surfaces. The 
choice of the particular functional is crucial as it determines the aesthetic properties of the final smooth surface. We 
have presented a catalog of energy minimizing shapes to provide designers with an intuitive understanding of the 
effects of the various aesthetic functionals. This catalog will allow designers to predict the types of features they may 
obtain by performing the time-consuming functional optimization.  
 
In conclusion, we argue for the use of curvature variation as a better aesthetic measure than total curvature. We 
present a new functional, MVScross, that is a more complete formulation of curvature variation, thereby resulting in 
several features that make it attractive as an aesthetic functional.  
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Tab. 1: Results for high genus shapes: comparison of (left to right) input shape, minimizers of Willmore, MVS and 
MVScross energies (with the associated energy values – note these values are in different units). As indicated, the Lawson 
surfaces we obtained satisfy the theoretical, proposed upper bound for total bending energy [15]. 
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Tab 2: MVScross energy cost per blended 3-way junction for minimizers 
with 2, 3, 8, 12 and 12 junctions respectively. The junction energy of the 
surfaces in the top row with symmetric junctions is lower than that of the 
surfaces in the bottom row with assymetric junctions. 
 

Tab. 3: MVScross energy cost per blended 
4-way junction for symmetric minimizers 
with 2 and 6 junctions respectively.  
 

 
In our current system, a single shape may take over an hour to fully reach the final optimum. However, most of the 
substantial shape change occurs in the first few minutes. The remainder is spent in incremental changes that have little 
visible influence on the shape and only slightly reduce the energy value. For practical design applications, this latter 
phase could be cut short dramatically. In future work, we plan to explore various methods to make the optimization 
fast enough for use in an interactive surface design tool. 
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